a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
b. Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by
using a visual fraction model.
c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.
a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
b. Recognize and generate simple equivalent fractions with denominators of 2, 3, 4, 6, and 8 (e.g., 1/2 = 2/4, 4/6 = 2/3), Explain why the fractions are equivalent, e.g., by using a visual fraction model.
c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 6/2 (3 wholes is equal to six halves); recognize that 3/1 = 3; locate 4/4 and 1 at the same point of a number line diagram.
Equivalent fractions name the same amount by using different-sized fractional parts.
This Big Idea focuses on developing a conceptual understanding of equivalence and the procedure for finding an equivalent for a given fraction. Students develop the understanding that any given fraction can be represented numerous ways but to be equivalent they must have the same value.
a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
b. Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by using a visual fraction model.
c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.
4.NF.1 Explain why a fraction a/b is equivalent to a fraction (n × a)/(n × b) by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.
b. Recognize and generate simple equivalent fractions with denominators of 2, 3, 4, 6, and 8 (e.g., 1/2 = 2/4, 4/6 = 2/3), Explain why the fractions are equivalent, e.g., by using a visual fraction model.
c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 6/2 (3 wholes is equal to six halves); recognize that 3/1 = 3; locate 4/4 and 1 at the same point of a number line diagram.
MGSE4.NF.1 Explain why two or more fractions are equivalent a/b = (n × a)/(n × b) ex: ¼ = (3 x 1)/(3 x 4) by using visual fraction models. Focus attention on how the number and size of the parts differ even though the fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.